ProcessingStep¶
Record of a single data processing operation applied to time series.
This class documents individual steps in a data processing pipeline, capturing
the type of processing performed, when it was executed, the function used,
and the parameters applied. Each step maintains a complete audit trail of
data transformations.
Processing steps are chained together to form a complete processing history,
enabling full traceability from raw data to final processed results. The
step_distance field tracks temporal shifts introduced by operations like
forecasting or lag analysis.
Field Definitions¶
| Field | Type | Required | Default | Description |
|---|---|---|---|---|
type |
ProcessingType |
✓ | — |
Category of processing operation performed |
description |
str |
✓ | — |
Human-readable description of what this processing step accomplished |
run_datetime |
datetime |
✓ | — |
Timestamp when this processing step was executed |
requires_calibration |
bool |
✓ | — |
Whether this processing step requires calibration data or parameters |
function_info |
FunctionInfo |
✓ | — |
Information about the function used for processing |
parameters |
None |
✗ | None |
Parameters passed to the processing function |
step_distance |
int |
✗ | 0 |
Number of time steps shifted (positive for future predictions, negative for lag operations) |
suffix |
str |
✓ | — |
Short identifier appended to time series names (e.g., 'SMOOTH', 'FILT', 'PRED') |
input_series_names |
list |
✗ | Empty list ([]) |
Names of input time series used in this processing step |
Detailed Field Descriptions¶
type¶
Type: ProcessingType
Required: Yes
Category of processing operation performed
description¶
Type: str
Required: Yes
Human-readable description of what this processing step accomplished
run_datetime¶
Type: datetime
Required: Yes
Timestamp when this processing step was executed
requires_calibration¶
Type: bool
Required: Yes
Whether this processing step requires calibration data or parameters
function_info¶
Type: FunctionInfo
Required: Yes
Information about the function used for processing
parameters¶
Type: None
Required: No
Default: None
Parameters passed to the processing function
step_distance¶
Type: int
Required: No
Default: 0
Number of time steps shifted (positive for future predictions, negative for lag operations)
suffix¶
Type: str
Required: Yes
Short identifier appended to time series names (e.g., 'SMOOTH', 'FILT', 'PRED')
input_series_names¶
Type: list
Required: No
Default: Empty list ([])
Names of input time series used in this processing step
Usage Example¶
from meteaudata.types import ProcessingStep
# Create a ProcessingStep instance
from datetime import datetime
step = ProcessingStep(
type=ProcessingType.SMOOTHING,
description="Applied moving average smoothing",
run_datetime=datetime.now(),
requires_calibration=False,
function_info=func_info,
suffix="SMOOTH",
input_series_names=["temperature#1_RAW#1"]
)